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This paper aims to extend the variational boundary conditions for molecular dynamics
simulation [X. Li, W. E, Variational boundary conditions for molecular dynamics simula-
tions of solids at low temperature, Commun. Comp. Phys. 1 (2006) 136–176; X. Li, W. E,
Boundary conditions for molecular dynamics simulations at finite temperature: treatment
of the heat bath, Phys. Rev. B 76 (2007) 104107], to take into account external loading con-
ditions. Two derivations of the exact boundary conditions are presented, one with
Mori–Zwanzig projection procedure, and the other using lattice Green’s functions. Approx-
imate boundary conditions, which are more efficient in practice, are then discussed. Finally
several numerical experiments are presented to demonstrate the effectiveness of these
methods.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The main purpose of this paper is to present a systematic approach for finding proper boundary conditions for molecular
dynamics in solids. Due to the computational complexity, such simulations are typically done on rather small systems trun-
cated from a much larger sample. As a result, artificial boundaries are introduced, where boundary conditions are needed to
take into account the effect of the atoms that have been removed. Ideally, these boundary conditions should guarantee that
the system behaves in the same way as if the whole sample is being simulated. In particular, the boundary conditions should
play the following roles:

1. eliminate phonon reflections at the boundary,
2. introduce phonon from the surrounding heat bath to model thermal effect,
3. maintain remote loading.

Some of these issues have been addressed before. For example, several non-reflecting boundary conditions have been pro-
posed [6,14,13,26,19,39,40] to prevent the boundary reflection and minimize the interference with the numerical results.
Boundary conditions modeling heat bath are suggested in [22,27]. However, boundary conditions that account for external
loading, which is needed to study various properties of material response, have not been extensively studied.

In many material simulations, it is essential to understand how defects initiate and propagate under different external
loading condition in order to understand the micromechanical processes. One approach to model external loading is to
. All rights reserved.
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use the classical molecular dynamics methods for NPT ensemble [3,17,18,21,29,30,34]. These techniques aim to bring the
system to an isothermal/isobaric equilibrium, thereby maintaining the system at a constant temperature/pressure state.
Typically in these methods, auxiliary variables are introduced to mimic the interaction with a heat/pressure bath. In addition
periodic boundary conditions are usually used. While these methods have been quite useful in predicting constitutive equa-
tions and studying phase transitions, they might misrepresent the true dynamics of the system, such as phonon emission and
defect propagations.

Another approach to apply loading condition is to directly control the displacement of the atoms at the boundary, or apply
additional forces, e.g. see [7,20,28]. These methods are similar to experimental techniques, such as dead loading and applying
traction. However, since the system being simulated is usually much smaller than the real sample, with these methods the
computational results would be inevitably subject to boundary effect.

To find the physically correct boundary condition, we start with a sample of realistic size, from which our computational
domain is selected. The surround region acts as the pressure/heat bath. We then use a dimension reduction technique to
eliminate the degrees of freedom associated with the atoms in the bath. As a result, the correct boundary condition is de-
rived, which only involves the preselected atoms.

The resulting equations (see Eq. (26)) are known as the generalized Langevin equations. A key quantity there is the mem-
ory term, which comes from the coarse-graining procedure. Although in principle exact solutions can be found for the mem-
ory kernels, they are quite non-local: They involve many atoms and their previous history. Therefore they are very difficult to
implement in practice. To find approximate kernels that are practical, we use the variational formulation [26,41,27], which
finds local boundary conditions with optimal accuracy. Meanwhile the external loading will appear in the generalized
Langevin equation as an external force. We will discuss how the external force can be computed.

This rest of this paper is organized as follows. In Section 2, we derive the exact boundary condition using a dimension
reduction technique. We also present an alternative derivation using lattice Green’s functions. We then discuss the imple-
mentation in actual molecular dynamics simulation. Finally, in Section 5, we show several numerical experiments to dem-
onstrate these methods.

2. Derivation of the boundary condition

In this section, we will derive boundary conditions in the presence of a heat/pressure bath. We have in mind a sample of
realistic size, X, from which our computational domain, denoted by D, will be selected. The rest of the system, denoted by B,
will act as a heat/pressure reservoir. This decomposition is shown in Fig. 1.

In this paper, the interface between the computational domain and the bath region will be referred to as the boundary,
created by removing the surrounding atoms, while the physical boundary will be called the remote boundary since in practice
the bath region is far larger than the computational domain. Typically the computational domain contains the defects under
study, and loading condition needs to be applied to allow the defects to develop. This can be done by (1) applying loading
conditions at the remote boundary; (2) preparing the bath region according to certain elastic field. The latter method has
been widely used in MD simulations, using existing analytical solutions. Examples include the solution for an elliptical crack
by Sih and Liebowitz [36] and the Stroh’s solution for a dislocation [37]. The purpose of this paper is to derive the boundary
condition that incorporates the loading conditions.

The boundary condition will be found by eliminating the atoms in the bath while keeping the atoms in the computational
domain. For this purpose we will employ the compact procedure proposed by Mori and Zwanzig [42,43,32]. To begin with,
we consider a molecular dynamics system with interatomic potential Vðu1;u2; . . .Þ. The Newton’s equations of motion read,
Fig. 1. A schematic of the boundary in 2D: filled circles represent the atoms in the computational domain; open circles are the surrounding atoms.
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m€ui ¼ �rui
V þ fb

i ð1Þ
with loading force fb
i applied at the remote boundary. Here m is the mass of an atom and ui is the displacement. Throughout

this paper, we will assume that the system has an underlying lattice structure with the equilibrium position of an atom de-
noted by zi. The displacement is the deviation of the current position, ri, from the reference position, i.e. ui ¼ ri � zi.

In accordance with the decomposition of the domain, we divide the system into two groups: the atoms that will be in-
cluded in the computation, called retained atoms, and the atoms in the surrounding area, called bath atoms. We will partition
the displacement,
u ¼ ðuI;uJÞ; ð2Þ
where uI and uJ represent the displacement of the retained atoms and bath atoms, respectively. The dimension of the system
is given by dimðuÞ ¼ N, dimðuIÞ ¼ n and dimðuJÞ ¼ N � n. In most practical situations, n� N. We also decompose the veloc-
ity accordingly,
v ¼ ðvI; vJÞ: ð3Þ
Although the original Mori–Zwanzig formalism [5,32,42] can in principle eliminate the bath variables, the resulting equa-
tions are typically difficult to solve. Therefore we make the following approximation for the atomic interaction to simplify
the results. More specifically, we linearize the interaction involving atoms in the bath, while the non-linear atomic interac-
tion in the computational domain is retained. The new atomic potential also satisfies the following conditions:

(1) At the equilibrium state, the force on each atom should be zero.
(2) The new potential energy has the same phonon spectrum as the original potential model.

The purpose of such approximation is to keep the original atomic interaction in critical areas where local defects are pres-
ent, and simplify the atomic forces away from defects where the displacement field is smooth. In the appendix, an example
of this approximation is given for the embedded atom potential [12], a commonly used model for metallic materials. The
linearization of the atomic potential, known as harmonic approximation [4], offers reasonable accuracy below half of the
melting temperature. In practice, this approximation can be obtained by a Taylor expansion of the potential energy for
the bath atoms while fixing the retained ones. The procedure leads to the total Hamiltonian in the form of,
Hðu;vÞ ¼ UðuIÞ þ
1
2

uTKu� u � fb þm
2

v2: ð4Þ
Here UðuIÞ denotes the potential energy associated with the retained atoms. The matrix K 2 RN�N consists of the force con-
stant computed from the interatomic potential,
Kij ¼ r2
ui ;uj

V ;
at the reference state. It is partitioned accordingly,
K ¼
0 KIJ

KJI KJJ

� �
; ð5Þ
in which KIJ 2 Rn�ðN�nÞ; KJI ¼ KT
IJ , and KJJ 2 RðN�nÞ�ðN�nÞ. Since the interaction between the retained atoms is already included

in U, we assume the first entry to be zero. Similarly since the loading condition is applied at the remote boundary, we assume
that
fb ¼
0
fb

J

 !
:

The Hamilton’s equations then read,
m€uJ ¼ �KJJuJ � KJIuI þ fb
J ; ð6aÞ

m€uI ¼ �KIJuJ �ruI U: ð6bÞ
The initial state of the system is prepared so that the heat bath is in thermal equilibrium, while the atoms in the computa-
tional domain are initialized with deterministic data. More precisely, given ðuI; vIÞ; ðuJ; vJÞ are sampled from the Gibbs
distribution,
1
Z

e�bH0 ; ð7Þ
where
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H0ðuJ ;vJÞ ¼
1
2
ðuJ � �uJ þ K�1

JJ KJIuIÞTKJJðuJ � �uJ þ K�1
JJ KJIuIÞ þ

m
2
ðvJ � �vJÞ2: ð8Þ
Here, b ¼ ðkBTÞ�1 is the inverse temperature, Z is the partition function that normalizes the distribution, �uJ and �vJ prescribe
the initial average displacement and velocity field for the bath. They are assumed to be smooth, i.e. they vary slowly on the
atomic scale.

Next, we define the projection operator P such that for any function gðu; vÞ, we have
Pgðu;vÞ ¼ E½g�; ð9Þ
where E½�� is the expectation with respect to the normal distribution,
qðuJ; vJÞ ¼
e�bH0ðuJ ;vJÞR

e�bH0ðuJ ;vJ ÞduJdvJ
:

In particular, we have
PuðuIð0ÞÞ ¼ uðuIð0ÞÞ ð10Þ
for any function u and
PuJð0Þ ¼ �uJ � K�1
JJ KJIuIð0Þ: ð11Þ
Similarly,
PuðvIð0ÞÞ ¼ uðvIð0ÞÞ; PvJ ¼ �vJ: ð12Þ
For the complementary projection operator Q; Q ¼ I � P, we have
QuðuIð0ÞÞ ¼ 0; QuJð0Þ ¼ uJð0Þ � ½�uJ � K�1
JJ KJIuIð0Þ�: ð13Þ
The projection operators have been motivated by the optimal prediction method [9,8,10,11], where the operator has been
defined as the conditional expectation.

Our next step is to derive the equations only involving the retained variables. First we recall the Liouville operator,
L ¼ v � ru �
1
m
ruH � rv: ð14Þ
From (6), we have
Lu ¼ v; LvI ¼ �
1
m
ðKIJuJ þrUÞ; LvJ ¼

1
m
ð�KJJuJ � KJIuI þ fb

J Þ:
The Mori–Zwanzig’s procedure [5,42,43,32] yields
m€uI ¼ metLPLvIð0Þ þ
Z t

0
esLKðt � sÞdsþ RðtÞ; ð15Þ
where
RðtÞ ¼ metQLQLvIð0Þ; ð16aÞ

KðtÞ ¼ PLRðtÞ: ð16bÞ
The procedure involves a decomposition using the projection operators, and the history-dependent term comes from the
Dyson’s formula. More details can be found in [44]. Equations in the form of (15) are known as the generalized Langevin
equations (GLE). The first term on the right hand side describes the interaction among the retained variables. The second
term describes history-dependence of the dynamics: After eliminating the degrees of freedom associated with the heat bath,
the dynamics is no longer Markovian. The last term, which represents the influence of the heat bath, is often regarded as the
random force.

Next, we will compute the terms on the right hand side.

2.1. The first term

For the first term on the right hand side of (15), we have
mPLvIð0Þ ¼ KIJK
�1
JJ KJIuIð0Þ � rUðuIð0ÞÞ � KIJ �uJ ;
yielding
metLPLvIð0Þ ¼ KIJK
�1
JJ KJIuI �rUðuIÞ � KIJ �uJ: ð17Þ
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2.2. The random force

To compute RðtÞ explicitly, we observe that at t ¼ 0,
Rð0Þ ¼ �KIJ ½uJð0Þ � ð�uJ � K�1
JJ KJIuIÞ�: ð18Þ
This, along with the form of the projection operators, suggests that we seek the random force in the form of
RðtÞ ¼ CðtÞ½uJð0Þ � ð�uJ � K�1
JJ KJIuIð0ÞÞ� þ SðtÞðvJð0Þ � �vJÞ; ð19Þ
with coefficients C 2 Rn�ðN�nÞ and S 2 Rn�ðN�nÞ to be determined.
Furthermore, from Eq. (16a), one has
_RðtÞ ¼ QLRðtÞ;
which combined with Eq. (19), yields
m _CðtÞ ¼ �SðtÞKJJ;

_SðtÞ ¼ CðtÞ;
Cð0Þ ¼ �KIJ ;

Sð0Þ ¼ 0:

8>>>><>>>>: ð20Þ
Here, the initial condition is obtained from (18). From the equations above, one can easily verify that
m€C ¼ �CKJJ; Cð0Þ ¼ �KIJ; _Cð0Þ ¼ 0: ð21Þ
This defines an exterior problem in the bath region, where the equation is the linearized MD, and comparing to (6), there is
no traction applied at the remote boundary or the interface with the computational domain. Furthermore, one observes that
the solution of the equation above only depends on the force constants. It is independent of the remote boundary condition
and the temperature.

Using Eq. (20), one can prove that the random force RðtÞ is a stationary Gaussian process with zero average. The time cor-
relation is given by
hRðt þ sÞRðsÞTi ¼ �kBTCðtÞK�1
JJ KJI ¼ kBTHðtÞ; ð22Þ
where we defined the function HðtÞ 2 Rn�n as follows:
HðtÞ ¼ �CðtÞK�1
JJ KJI: ð23Þ
In particular,
Hð0Þ ¼ KIJK
�1
JJ KJI ð24Þ
is a semi positive–definite matrix. Such relation between the fluctuation of the random force and the memory kernel has
been referred to as the second fluctuation–dissipation theorem [24].

2.3. The memory term

The memory term will be computed from (16b) and (19). A direct calculation gives
KðtÞ ¼ PLRðtÞ ¼ CðtÞ�vJ �
1
m

SðtÞKJJ �uJ þ CðtÞK�1
JJ KJIvIð0Þ þ

1
m

SðtÞfb
J :
With a substitution into (15), we can simplify the memory term to,
Z t

0
esLKðt � sÞds ¼ CðtÞ�uJ þ SðtÞ�vJ þ ðCð0Þ � CðtÞÞK�1

JJ fb
J þ KIJ �uJ �

Z t

0
HðsÞvIðt � sÞds: ð25Þ
2.4. The generalized Langevin equation

Finally, by collecting terms, we arrive at the generalized Langevin equation,
m€uI ¼ �rUðuIÞ þHð0ÞuI �
Z t

0
HðsÞ _uIðt � sÞdsþ RðtÞ þ fex

: ð26Þ
Here,
fex ¼ CðtÞ�uJ þ SðtÞ�vJ þ ðCð0Þ � CðtÞÞK�1
JJ fb

J ð27Þ
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is regarded as the external force from the surrounding bath, HðtÞ will be called the memory kernel, and RðtÞ is a random
force.

For each atom in the computational domain, i 2 D, the equation above becomes
m€ui ¼ �rui
Uþ

X
j2D

hijð0Þuj �
Z t

0
hijðsÞ _ujðt � sÞds

� �
þ RiðtÞ þ fex

i : ð28Þ
It has been shown in [27] that the memory and random force terms will be zero for atoms whose distance to the boundary is
larger than the cut-off radius. Therefore, these terms will only appear for atoms near the boundary.

2.5. The connection with the lattice Green’s functions

Another approach to derived the boundary condition is based on the lattice Green’s function, e.g. see [23]. Here we will
make the connection between these two methods.

The main idea is to solve (6a) first, and then substitute it into (6b). To begin with, we consider the following
problem:
m €w ¼ �KJJw; w 2 RN�n ð29Þ
with initial condition wð0Þ and _wð0Þ. As discussed in the previous section, this defines an exterior problem in the bath with
no forces applied at the boundaries.

To find the solution of this system, we define the following Green’s functions, GðtÞ 2 RðN�nÞ�ðN�nÞ, satisfying the
equation:
m€G ¼ �KJJG;

Gð0Þ ¼ 0; _Gð0Þ ¼ I:

(
ð30Þ
Taking the time derivative, and letting H ¼ _G, we have
m€H ¼ �KJJH;

Hð0Þ ¼ I; _Hð0Þ ¼ 0:

(
ð31Þ
Applying Laplace transform, one gets
bGðkÞ ¼ ½kI þ KJJ ��1
; bHðkÞ ¼ k½kI þ KJJ ��1

:

Thus using the Green’s functions, we can express the solution to the exterior problem (29) as
wðtÞ ¼ _GðtÞwð0Þ þ GðtÞ _wð0Þ: ð32Þ
Especially by comparing (30) and (31) with (20), we get
CðtÞ ¼ �KIJ
_GðtÞ; SðtÞ ¼ �KIJGðtÞ: ð33Þ
To make connections to the GLE (26), we will split the problem into several subproblems. First we consider the case when the
system is in mechanical equilibrium, but is connected to the computational domain
m d2

dt2 uð1ÞJ ¼ �KJJu
ð1Þ
J � KJIuI;

uð1ÞJ ð0Þ ¼ �K�1
JJ KJIuIð0Þ; d

dt uð1ÞJ ð0Þ ¼ 0:

8<: ð34Þ
The bath is in mechanical equilibrium since
KJJu
ð1Þ
J ð0Þ þ KJIuIð0Þ ¼ 0:
Applying Laplace transform, one finds
uð1ÞJ ðtÞ ¼ � _GðtÞK�1
JJ KJIuIð0Þ þ

Z t

0
aðsÞuIðt � sÞds; ð35Þ
where
âðkÞ ¼ �½kI þ KJJ��1KJI:
Therefore,
aðtÞ ¼ �GðtÞKJI: ð36Þ
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In addition, the influence on the atoms in D is given by
�KIJu
ð1Þ
J ðtÞ ¼ Hð0ÞuIðtÞ �

Z t

0
HðsÞ _uIðt � sÞds; ð37Þ
where
HðtÞ ¼ �KIJ

Z þ1

t
aðsÞds: ð38Þ
This produces the memory term in the GLE (26), and in light of (33), the memory functions defined in (23) and (38) are the
same.

To include the random noise from the heat bath, we consider the following subproblem:
m d2

dt2 uð2ÞJ ¼ �KJJu
ð2Þ
J

uð2ÞJ ð0Þ � N ð0; kBTK�1
JJ Þ; vð2ÞJ ð0Þ � N ð0; kBT=mIÞ:

8<: ð39Þ
Namely, the initial condition is picked from the Gaussian distribution,
1
Z

e
�b 1

2uT
J KJJuJþ1

2mv2
J

� �
:

The solution to this problem is given by (32). The substitution into (6b) yields
�KIJu
ð2Þ
J ðtÞ;
which can be identified to be the random noise term using (33) and (18).
The third subproblem picks up the existing elastic field and the remote boundary condition:
m d2

dt2 uð3ÞJ ¼ �KJJu
ð3Þ
J þ fb

J ;

uð3ÞJ ð0Þ ¼ �uJ ;
d
dt uð3ÞJ ð0Þ ¼ �vJ :

8<: ð40Þ
Using Laplace transform, one finds the solution
uð3ÞJ ¼ _GðtÞ�uJ þ GðtÞ�vJ þ ð _Gð0Þ � _GðtÞÞK�1
JJ fb

J ;
which combined with (33) and (27), recovers the external force fex
J .

Finally, we get
uJ ¼ uð1ÞJ þ uð2ÞJ þ uð3ÞJ ;
which satisfies (6a) with the correct initial and boundary conditions, and the substitution into (6b) gives the GLE (26).

3. Modeling the external loading

3.1. Pressure bath

One common approach to introduce the external loading is to prepare the system by selecting initial conditions from an
existing elastic field which is already in equilibrium. In this case, we have
�KJJ �uJ � KJIuIð0Þ ¼ 0; �vJ ¼ 0:
The external force then becomes
fex ¼ CðtÞ�uJ ¼ �CðtÞK�1
JJ KJIuIð0Þ ¼ HðtÞuIð0Þ ð41Þ
using (23). Thus the external force term can also be computed using the memory kernel.
For instance, one can deform the bath region with a uniform strain, �. Namely
�uj ¼ u0 þ �ðzj � z0Þ
for j 2 B, and
uið0Þ ¼ u0 þ �ðzi � z0Þ
for i 2 D. Such idea has been used in the crack simulation [19] to model a uniformly strained system. More generally, since
we expect �uJ to be smooth, we can use anisotropic solutions obtained from elasticity equations, e.g. the analytical solution
for an elliptical crack [36], which has been used in numerous crack simulations [7,28,31,41], and the Stroh’s solution [37] for
single dislocations.



X. Li / Journal of Computational Physics 227 (2008) 10078–10093 10085
3.2. Remote loading condition

Here we discuss how to model loading condition from far field boundaries. From Section 2.5, we have shown that we can
decompose the solution in the bath into three parts
uJ ¼ uð1ÞJ þ uð2ÞJ þ uð3ÞJ ;
in which uð1ÞJ ðtÞ is the solution of (34), represented by the memory term in the GLE (26), and uð2ÞJ ðtÞ is the solution of (39)
which corresponds to the random force. They can be computed once the memory kernel is available.

The third part uð3ÞJ includes the loading condition from the remote boundary and the initial elastic field. In the case where
the initial and boundary conditions are smooth, we expect the solution to be smooth. In this case, Eq. (40) can be replaced by
a continuum elastodynamics equation:
q0
o2

ot2 u ¼ r � r; ð42Þ
where q0 is the density in the reference coordinate. To make the continuum models consistent with the underlying atomistic
model, the stress, r, should be computed from the interatomic potential. Typically, this done using either the Cauchy–Born
rule [16], or a linear stress–strain relation with elastic moduli computed from the atomistic models. For instance the idea of
approximating molecular dynamics by elasticity models has been investigated in [15]; Since in our bath region, the atomic
interaction has been linearized, we will use the anisotropic linear elasticity model with elastic parameters computed from
the force constant [4]
calbm ¼ �
1

8V0

X
i

za
i Klm

i zb
i þ zl

i Kam
i zb

i þ za
i Klb

i zm
i þ zl

i Kab
i zm

i ; ð43Þ
where V0 is the volume of a unit cell, the superscripts indicate the entries and summation is over a neighborhood of the ori-
gin within the cut-off radius.

Remark 1. Clearly more general remote loading conditions, such as dead loading or dynamic loading condition can also be
dealt with using this method.

Remark 2. This idea is quite similar to conventional domain decomposition method. However, we would not perform iter-
ations between the two regions because the molecular dynamics simulation is already quite expensive. Instead, the memory
kernel, which is analogous to the Dirichlet-to-Neumann map, offers the accurate coupling condition.
4. Approximating the memory kernel: variational boundary condition

In order to solve the generalized Langevin equation (26), one has to find the kernel function HðtÞ, which will in turn deter-
mine the random force since RðtÞ is Gaussian and stationary. Although in principle, this function can be computed from (20),
it would not be practical for the following reasons:

1. the system (20) is rather large, the computation could be as expensive as solving the full system (1);
2. the memory kernel obtained from this approach is exact. But it is usually rather non-local in that it involves all the atoms

at the boundary, and their previous history. Directly implementing such kernels will dramatically slow down the
simulation.

Therefore, it is of practical interest to find approximate kernels that are local and at the same time, offers reasonable accu-
racy. The need to approximate the Mori–Zwanzig formalism has also been recognized by Chorin and coworkers in their re-
cent work on optimal prediction [10,8,9]. In this paper, we will use the variational boundary condition (VBC) [26,27]. Here,
we will briefly describe the formulation of VBC.

First from the derivations in the previous section we observe that the memory kernel is independent of the temperature
and the loading condition. In fact as indicated by (33), the function CðtÞ, which subsequently determines HðtÞ, can be ob-
tained from the Green’s functions, which only depends on the geometry of the boundary and the force constant. This, how-
ever, might not be true if the projection operator is chosen differently [44]. Based on this observation, we will compute the
memory kernel at zero temperature with no external loading, in which case the phonons will only emanate from the com-
putational domain and the problem becomes preventing reflections at the boundary. In fact it has been shown that for the
exact memory kernel, the reflection coefficient is zero for all phonon mode [27]. After the memory kernel is obtained, the
random noise will be sampled based on the fluctuation–dissipation theorem.

The variational formulation aims to find a memory kernel in the form of
HðtÞ ¼
Z þ1

�1
CðsÞCðt þ sÞT ds: ð44Þ
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To make the kernel local, we require that the function CðtÞmust have compact support on some finite interval ½0; t0�. In space,
the is done by requiring that each entry hij be non-zero only for those atoms j that are close to atom i, and these preselected
atoms will be called the stencil. The purpose of expressing the kernel HðtÞ in this particular form is two-fold: first, such mem-
ory kernel guarantees the numerical stability [25]. Secondly, the Gaussian process, RðtÞ, can be easily constructed from CðtÞ.
More specifically, let WðtÞ be the white noise, i.e.
hWpðt þ sÞWqðsÞTi ¼ dpqdðtÞ for any s P 0:
Then the random force can be sampled as follows:
RðtÞ ¼
ffiffiffiffiffiffiffiffi
kBT

p Z þ1

�1
CðsÞWðt � sÞds: ð45Þ
One can easily verify that the fluctuation–dissipation theorem (22) is satisfied.
In order to find the memory kernel with optimal accuracy, we define the total reflection as
E½fCjg; n� ¼
X

s

X
s0

Z
jBss0 j2WsðkÞdk; ð46Þ
where k is a phonon mode, WsðkÞP 0 is some weight function, and the integration is over the Brillouin zone [4]. Bss0 ðkÞ,
which can be computed from the memory kernel CðtÞ, is the coefficient of reflection from branch s to s0. Here since the bath
region is much larger, we will treat it as an infinite medium, and we only take into account the reflection off the interface
with the computational domain.

There are many natural choices of the weight function W. In [13,14], W is taken to be a constant. In [26], W is taken as
WsðkÞ ¼ jrxsðkÞ � nj: ð47Þ
In this case, Eq. (46) represents the energy flux across the boundary due to the reflection of phonons.
Finally, the local boundary condition is found by minimizing the total reflection (46).
The overall numerical procedure can be summarized as follows:

(1) compute the memory kernel from the variational formulation,
(2) compute the random noise from (45),
(3) approximate uð3ÞJ ðtÞ by solving the continuum Eq. (42), and compute the force on the atoms in the computational

domain, fex ¼ �KIJu
ð3Þ
J ðtÞ,

(4) solve the generalized Langevin equation (26).

5. Examples

5.1. A one-dimensional chain model

As the first example, we consider a one-dimensional chain of atoms connected by springs
m€rj ¼ u0ðrjþ1 � rjÞ �u0ðrj � rj�1Þ: ð48Þ
Here, m is the mass of an atom, rj denotes the position, and u is the interatomic potential. The equilibrium configuration of
the system be given by zj ¼ ja0 with a0 being the lattice parameter. The spectrum of the discrete lattice waves, known as
phonons, can be obtained by linearizing Eq. (48), yielding
m€uj ¼ Kðujþ1 � 2uj þ uj�1Þ=a2
0; ð49Þ
where uj ¼ rj � zj is the displacement, and K ¼ u00ða0Þa2
0.

For this model, if the whole left half is regarded as the bath, the memory kernel can be computed explicitly [1,2],
hðtÞ ¼
ffiffiffiffiffi
m
p

K
t

J1
2Ktffiffiffiffiffi

m
p
� �

;

where J1 is the Bessel function of the first kind.
In our computation we non-dimensionalize the system (48) and all the numerical results will be provided with fK;m; a0g

as energy, mass and length unit, respectively. For the atomic potential, we use the Lennard–Jones potential,
uðrÞ ¼ 4ðð1=rÞ12 � ð1=rÞ6Þ: ð50Þ
The numerical experiment is set up as follows: We restrict the computational domain to the right half of the system, j > 0.
This is shown in Fig. 2. The atoms in the computational domain are initially at rest, while the atoms in the bath region, i.e. for
j 6 0, is uniformly deformed with strain e ¼ 0:01. Namely the initial displacement is given by,



Fig. 3.

u
1

u
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Fig. 2. A schematic of the boundary: filled circles represent the selected atoms that will be followed in the computation; open circles are the atoms outside.
The boundary is between the zeroth atom and the first atoms.
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ujð0Þ ¼
0; if j P 0;
je; if j < 0:

	

The initial velocity is zero for every atom.

The computational domain consists of 100 atoms, and we choose the time step Dt ¼ 0:2. For the memory kernel CðtÞ in
(44), we pick t0 ¼ 4. Using the boundary condition, the system is evolved for 200 time steps, and Fig. 3 displays numerical
results, which agree with the exact solutions, also shown in the figure. The exact solution is computed from a full simulation
which involves the bath atoms explicitly.

5.2. Simulation of cracks in 3D iron-a system

Next, we consider a more realistic example, a model of a-iron, which is a three-dimensional BCC system. The atomic po-
tential used is the embedded atom potential developed in [35]. The system studied is a 3D rectangular sample, with the three
orthogonal axes along the [110], ½1 �10� and [001] directions, respectively. The system has the dimension of 60� 30� 6
atomic units, containing 43,600 atoms. The crack is formed by removing a few atoms at the center row. Here, we will use
physical units. The mass, length and energy units are chosen to be 55.845 a.m.u. (atomic mass unit), Å (Angstrom) and
kB K ð1:38065� 10�23 JÞ, respectively. The corresponding time scale is 8.19 ps. In all the following simulations, we set the
time step to Dt ¼ 0:002.

We will study a center cracked system under mode I loading, shown in Fig. 4. For the computational domain, variational
boundary condition is applied to the top and bottom boundaries, while in the horizontal direction, periodic boundary con-
dition is used. For the memory kernel, we choose the spatial stencil to consist of 25 atoms, with 5 atoms in each tangential
direction, and we set t0 ¼ 0:04.
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The displacement and velocity of the atoms at t ¼ 40. Solid line: exact solution; dashed line: solution obtained from variational boundary condition.
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Fig. 4. Setup of the simulation: a centered crack under mode I loading. The computational domain is inside the dashed line.
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In the first test, the bath is under a uniaxial strain, e22 ¼ 0:0027 while the computational domain is at rest initially. The
numerical results are displayed in Fig. 5 for different values of the applied temperature. We plot the position of the atoms
from a cross section of the h001i plane. We observe that at T ¼ 0 K, and T ¼ 250 K, the crack does not open up. However, at
T ¼ 500 K, the crack grows slightly and then dislocations appear in the [100] direction and move away from the crack tip.
Fig. 5. Simulation of a crack: the position the atoms at t ¼ 40. From top to bottom: T = 0 K T = 250 K; T = 500 K.



Fig. 6. Crack under uniaxial strain. Top: e22 ¼ 0:0031, the solution is plotted at t ¼ 80 ð0:655 nsÞ; bottom: e22 ¼ 0:0032, the solution is plotted at
t ¼ 10 ð0:082 nsÞ.
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Next we keep the temperature at T ¼ 0 K, and increase the strain to e22 ¼ 0:031 and e22 ¼ 0:032, and the results are
shown in Fig. 6. We see that at e22 ¼ 0:031, the crack does not move forward even after a long time integration. However,
at e22 ¼ 0:032, the crack starts to propagate without generating dislocations. In addition we have observed similar behavior
as in the previous test if we raise the temperature to 500 K. This indicates that the crack in this material is brittle at zero
temperature, and ductile at higher temperature T ¼ 500 K. This agrees with the results observed in [7].

In the last experiment, we study the system under remote dynamic loading condition. The whole sample is initially at
rest, and at the top remote boundary, the velocity is prescribed at follows:
Fig. 7.
Dashed
v2ðx; L; tÞ ¼
v0t=t0 if t 6 t0;

v0 if t > t0:

	
ð51Þ
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Stress waves generated from the bottom boundary condition. Solid line: t ¼ 72ð0:590 nsÞ, the magnitude of the stress wave is 2143 (29.59 GPa);
line: t ¼ 120 ð0:981 nsÞ, the magnitude of the stress wave is 3368 (46.51 GPa).



Fig. 8. Crack under dynamic loading. The solution is plotted at t = 144 (1.18 ns).
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We choose v0 ¼ 8ð97:68 ms�1Þ; t0 ¼ 10ð81:9 psÞ, and the size of the bath region L ¼ 5000 (0.5 lm). The boundary condition
at the bottom is applied in the same way with opposite direction. The setup of this simulation is motivated by the fracture
simulation [33]. Since the system is periodic in the other two directions, we replace the elastodynamics (42) with a one-
dimensional model
q0
o2

ot2 u2 ¼ C11
o2

oy2 u2:
Here q0 ¼ 0:08493 ð7:869 g cm�3Þ and C11 ¼ 17253:37 kBK Å
�3 ð238:2 GPaÞ, both computed from the atomistic model. The

equation is solved by a finite difference method.
Fig. 7 shows the incident stress waves at t ¼ 72 and t ¼ 120, and under the second stress wave, the crack starts to open. A

snapshot of the system at t ¼ 144 (1.18 ns) is displayed in Fig. 8.

6. Summary and discussion

We have presented a theoretical framework for deriving the boundary conditions for molecular dynamics simulations of
crystalline solids at finite temperature with external loading conditions. In addition we have presented practical applications
of this framework. In contrast to empirical methods, the current approach is more first principle-based: It starts with the full
atomistic description, and the Mori–Zwanzig formalism is used to eliminate the bath atoms and derive the effective bound-
ary condition in the form of GLEs. We have discussed how to compute the external force, which appears in the GLEs as a
result of the loading conditions.

The primary purpose of these boundary conditions is to model the influence from the surrounding bath and the loading
condition at the remote boundaries. With these boundary conditions, one can conduct simulations without having to treat
the bath atoms explicitly. For the examples in the previous section, full simulations would have to be several times larger in
order to eliminate the boundary effect. They will be even more impractical for the finite temperature case, because the initial
condition in the bath is extremely difficult to prepare. This computational gain will be much greater for more complicated
problems, e.g. the interaction of local defects with elastic waves. The variational boundary condition further reduces the
computational cost by using local kernel functions.

Our formulation is based on the assumption that the atomic interaction involving the atoms in the bath is linear. This is a
reasonable approximation for prefect crystal. But it will prevent the local defect from entering the bath, e.g. a dislocation
propagating through the boundary observed in the second numerical example. This is the main limitation of these boundary
conditions.

The current method can be applied to an isolated molecular dynamics simulation, as demonstrated in this paper. More-
over it can be applied to a multiscale method that involves both atomistic and continuum models in the simulation. In this
case, the GLEs provide the boundary condition at the interface as the coupling strategy. The continuum variables provide the
loading condition on the atomistic region. This work is in progress.

Another extension of the current method is to coarse-grain a molecular system. More specifically, instead of dividing the
system into two separate domains, one selects a set of representative atoms throughout the domain, which is similar to the
setup of the quasi-continuum method [38]. Then, Mori–Zwanzig formalism can be used to derive the effective equations for
these selected atoms, reducing the atomic degrees of freedom dramatically. In this case, many interesting issues arise, such
as the ghost force, energy conservation, and the calculation of the random noise and memory terms, etc. These issues will be
addressed in separate works.

Appendix A. Simplifying the atomic potential

Here we show how the harmonic approximation can be made to arrive at a simplified model for the atomic potential. As
shown in Fig. 1, the computational domain, X, is divided into the computational domain, D, and the bath region, B,
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X ¼ D [ B:
We consider the potential energy from the embedded atom model (EAM) [12],
V ¼ 1
2

X
i–j

uðrijÞ þ
X

i

EðqiÞ; qi ¼
X
j–i

qðrijÞ; rij ¼ ri � rj: ðA:1Þ
The function u and q only depends on the interatomic distance. Namely, uðrÞ ¼ pðrÞ, with r ¼ jrj, then
ru ¼ p0
r
r
; r2u ¼ ðp00 � p0=rÞ r� r

r2 þ p0=rI:
It is easy to compute the force on an atom i in the interior of the system,
�rri
V ¼ �

X
j–i

ruðrijÞ þ ðE0ðqiÞ þ E0ðqjÞÞrqðrijÞ ðA:2Þ
and the force constants
Kij ¼ r2
ri ;rj

V ¼ �r2uðzijÞ � 2E0ðqÞr2qðzijÞ þ E00ðqÞ
X

k–i;k–j

rqðzikÞ � rqðzjkÞ ðA:3Þ
and
Kii ¼ r2
ri ;ri

V ¼
X

j–i
r2uðzijÞ þ 2E0ðqÞr2qðzijÞ þ E00ðqÞrqðzijÞ � rqðzijÞ: ðA:4Þ
One can verify that [4],
Kii ¼ �
X
j–i

Kij: ðA:5Þ
The force constant, which is second derivatives of the atomic potential at the equilibrium position, will determine the spec-
trum of the lattice waves, known as phonons [4].

We approximate the atomistic model with a simpler model, which is set up based on the following principles,

(1) The interaction in the heat bath is linear.
(2) The non-linear atomic interaction should be retained in the computational domain D.
(3) At the equilibrium state, the force on each atom should be zero.
(4) The new potential energy has the same phonon spectrum as the original potential model.

We seek the approximate potential in the following form:
Vnew ¼ VD þ VB;
and we will construct these energies separately.
To begin with we construct VB by the classical harmonic approximation [4],
VB ¼ �
1
4

X
i2B;j2X

ðui � ujÞTKijðui � ujÞ: ðA:6Þ
Meanwhile, the energy VD is approximated by assuming the distance to the atoms in the bath are at equilibrium,
VD ¼ 1
2

P
i2D;j2D

uðrijÞ þ
P
i2D

EðqiÞ

þ
P

i2D;j2B
Fi;j � ui � 1

4

P
i2D;j2X

ðui � ujÞTHi;jðui � ujÞ;

qi ¼
P

j2D;j–i
qðrijÞ þ

P
j2B

qðzijÞ:

8>>>>><>>>>>:
ðA:7Þ
Notice that two additional terms have been added to account for the truncation. In these two terms, the constants, Fij and Hij,
will be selected according to the conditions postulated above. In particular, since the force on each atom i 2 D is given by
rri
Vnew ¼

X
j–i;j2D

ruðrijÞ þ ðE0ðqiÞ þ E0ðqjÞÞrqðrijÞ þ
X
j2B

Fij �
1
2

X
j2D

Hijðui � ujÞ �
1
2

X
j2B
ðKij þ HijÞðui � ujÞ: ðA:8Þ
From the third assumption, one has
Fij ¼ �ruðRijÞ � 2E0ðqÞrqðzijÞ ðA:9Þ
by setting ui ¼ uj ¼ 0.
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Next, the matrices Hij will be determined from the forth assumption, which suggests that
r2
ri ;rj

V ¼ r2
ri ;rj

Vnew ðA:10Þ
at the equilibrium position for all i and j. In light of (A.6) this certainly is true for i 2 B and j 2 B.
On the other hand, for i 2 B, we get
rri
VB ¼ �

1
2

X
j2X

Kijðui � ujÞ �
1
2

X
j2B

Kijðui � ujÞ ðA:11Þ
and
rri
VD ¼ �

1
2

X
j2D

Hijðui � ujÞ: ðA:12Þ
As a result for j 2 D, we have
r2
ri ;rj

Vnew ¼
1
2
ðKij þ HijÞ:
Hence, we set
Hij ¼ Kij for i 2 D; j 2 B:
Next, for i 2 D and j 2 D, we have
r2
ri ;rj

VD ¼ Hij �r2uðzijÞ � 2E0ðqÞr2qðzijÞ þ E00ðqÞ
X

k–i;k–j;k2D
rqðzikÞ � rqðzjkÞ þ E00ðqÞrqðzijÞ

�
X

k2D;k–j

rqðzjkÞ �
X

k2D;k–i

rqðzikÞ
 !

: ðA:13Þ
In addition,
r2
ri ;ri

VD ¼ Hii þ
X

j–i;j2D
r2uðzijÞ þ 2E0ðqÞr2qðzijÞ þ E00ðqÞ

X
j2D;j–i

rqðzijÞ �
X

j2D;j–i

rqðzijÞ þ E00ðqÞ
X

j2D;j–i

rqðzijÞ

� rqðzijÞ: ðA:14Þ
In light of Eqs. (A.4), (A.3) and (A.10), we find that
Hi;j ¼ E00ðqÞ
X
k2B
rqðzikÞ � rqðzjkÞ þ E00ðqÞrqðzijÞ �

X
k2B
rqðzjkÞ �

X
k2B
rqðzikÞ

 !

and
Hi;i ¼
X
j2B
r2uðzijÞ þ 2E0ðqÞr2qðzijÞ þ E00ðqÞ

X
j2B
rqðzijÞ � rqðzijÞ � E00ðqÞ

X
j2B
rqðzijÞ �

X
j2B
rqðzijÞ:
Finally, we arrive at the simplified model (4). In particular,
UðuIÞ ¼
1
2

X
i2D;j2D

uðrijÞ þ
X
i2D

EðqiÞ þ
X

i2D;j2B
Fi;j � ui �

1
4

X
i2D;j2D

ðui � ujÞTHi;jðui � ujÞ �
1
2

X
i2D

uT
i

X
j2B

Kij

 !
ui;

qi ¼
X

j2D;j–i
qðrijÞ þ

X
j2B

qðzijÞ
ðA:15Þ
and
uTKu ¼
X

i2B;j2B
uiKijuj þ

X
i2B;j2D

uiKijuj þ
X

i2D;j2B
uiKijuj: ðA:16Þ
This shows that the entries of the matrix K consist of the force constants.
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